The dictionary approach for spherical deconvolution
نویسندگان
چکیده
We consider the problem of estimating a density of probability from indirect data in the spherical convolution model. We aim at building an estimate of the unknown density as a linear combination of functions of an overcomplete dictionary. The procedure is devised through a well-calibrated `1-penalized criterion. The spherical deconvolution setting has been barely studied so far, and the two main approches to this problem, namely the SVD and the hard thresholding ones considered only one basis at a time. The dictionary approach allows to combine various bases and thus enhances estimates sparsity. We provide an oracle inequality under global coherence assumptions. Moreover, the calibrated procedure that we put forward gives very satisfying results in the numerical study when compared with other procedures.
منابع مشابه
Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملMesh-based spherical deconvolution: A flexible approach to reconstruction of non-negative fiber orientation distributions
Diffusion-weighted MRI has enabled the imaging of white matter architecture in vivo. Fiber orientations have classically been assumed to lie along the major eigenvector of the diffusion tensor, but this approach has well-characterized shortcomings in voxels containing multiple fiber populations. Recently proposed methods for recovery of fiber orientation via spherical deconvolution utilize a sp...
متن کاملSeismic deconvolution by atomic decomposition: A parametric approach with sparseness constraints
In this paper an alternative approach to the blind seismic deconvolution problem is presented that aims for two goals namely recovering the location and relative strength of seismic reflectors, possibly with super-localization, as well as obtaining detailed parametric characterizations for the reflectors. We hope to accomplish these goals by decomposing seismic data into a redundant dictionary ...
متن کاملGenerative Deep Deconvolutional Learning
A generative model is developed for deep (multi-layered) convolutional dictionary learning. A novel probabilistic pooling operation is integrated into the deep model, yielding efficient bottom-up (pretraining) and top-down (refinement) probabilistic learning. After learning the deep convolutional dictionary, testing is implemented via deconvolutional inference. To speed up this inference, a new...
متن کاملA Modified Damped Richardson-Lucy Algorithm to Improve the Estimation of Fiber Orientations in Spherical Deconvolution
Introduction:. Standard spherical deconvolution approaches assume that HARDI signal can be modeled as a convolution between a common fiber response and a fiber orientation distribution function [1][2]. Recent spherical deconvolution methods improved the quality of the results introducing the non negative constraint of the solution [3][4][5]. It can be verified, however, that instability problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Multivariate Analysis
دوره 115 شماره
صفحات -
تاریخ انتشار 2013